WINDOW JOIN keyword
WINDOW JOIN is a SQL join type that efficiently aggregates data from a related table within a time-based window around each row. It is particularly useful for financial time-series analysis, such as calculating rolling statistics from price feeds, computing moving averages, or aggregating sensor readings within time windows.
It is a variant of the JOIN keyword and shares
many of its execution traits.
Despite the similar name, WINDOW JOIN and window functions serve different purposes:
- WINDOW JOIN: Aggregates data from a different table within a time window around each row. Uses
RANGE BETWEENto define a time-based window relative to each row's timestamp. - Window functions: Perform calculations across rows within the same table using the
OVERclause withPARTITION BY,ORDER BY, and frame specifications.
Use WINDOW JOIN when you need to correlate and aggregate data across two time-series tables. Use window functions for calculations within a single table.
Syntax
SELECT
left_columns,
aggregate_function(right_column) AS result
FROM left_table [alias]
WINDOW JOIN right_table [alias]
[ON join_condition]
RANGE BETWEEN <lo_bound> AND <hi_bound>
[INCLUDE PREVAILING | EXCLUDE PREVAILING]
[WHERE filter_on_left]
[ORDER BY ...]
RANGE clause
The RANGE clause defines the time window relative to each left row's
timestamp. Both boundaries are inclusive.
RANGE BETWEEN <value> <unit> PRECEDING AND <value> <unit> FOLLOWING
RANGE BETWEEN <value> <unit> PRECEDING AND <value> <unit> PRECEDING -- past window
RANGE BETWEEN <value> <unit> FOLLOWING AND <value> <unit> FOLLOWING -- future window
Supported time units:
nanosecondsmicrosecondsmillisecondssecondsminuteshoursdays
UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING are not supported in WINDOW
JOIN.
INCLUDE/EXCLUDE PREVAILING
INCLUDE PREVAILING(default): Includes right table rows within the time window plus the most recent right row with a timestamp equal to or earlier than the window start (similar to ASOF JOIN behavior), useful for "last known value" scenariosEXCLUDE PREVAILING: Only includes right table rows strictly within the time window
Requirements
- Both tables must have designated timestamps and be partitioned
- The right table must be a direct table reference, not a subquery
- Aggregate functions are required - you cannot select non-aggregated columns from the right table
- Symbol-based join conditions enable "Fast Join" optimization when matching on symbol columns
Aggregate functions
WINDOW JOIN supports all aggregate functions on the right table. However, the following functions use SIMD-optimized aggregation and will run faster:
sum()- Sum of valuesavg()- Average/meancount()- Count of matching rowsmin()/max()- Minimum/maximum valuesfirst()/last()- First/last value in the windowfirst_not_null()/last_not_null()- First/last non-null value
When only these optimized functions are used, queries benefit from vectorized execution.
Examples
For the following examples, consider two tables:
trades: A table of executed trades withsym,price, andtscolumnsprices: A table of price quotes withsym,price,bid, andtscolumns
Basic example: Rolling sum
Calculate the sum of prices from the prices table within ±1 minute of each
trade:
SELECT
t.sym,
t.price,
t.ts,
sum(p.price) AS window_sum
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
EXCLUDE PREVAILING
ORDER BY t.ts;
Symbol-based Fast Join
When joining on symbol columns, QuestDB uses an optimized "Fast Join" path for improved performance:
SELECT
t.sym,
t.ts,
avg(p.bid) AS avg_bid,
count() AS num_prices
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 5 seconds PRECEDING AND 5 seconds FOLLOWING
EXCLUDE PREVAILING;
With additional join filters
You can add additional conditions to the ON clause to filter the right table:
SELECT
t.sym,
t.ts,
avg(p.price) AS avg_price
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym) AND p.price < 300
RANGE BETWEEN 2 minutes PRECEDING AND 2 minutes FOLLOWING
EXCLUDE PREVAILING
ORDER BY t.ts;
Past-only window
Look back at a historical window before each trade:
SELECT
t.sym,
t.ts,
sum(p.price) AS past_sum
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 2 minutes PRECEDING AND 1 minute PRECEDING
EXCLUDE PREVAILING;
Future-only window
Look ahead at a future window after each trade:
SELECT
t.sym,
t.ts,
sum(p.price) AS future_sum
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 1 minute FOLLOWING AND 2 minutes FOLLOWING
EXCLUDE PREVAILING;
Cross-table aggregation (no symbol match)
Aggregate all prices within the time window regardless of symbol:
SELECT
t.sym,
t.ts,
count() AS total_prices
FROM trades t
WINDOW JOIN prices p
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
EXCLUDE PREVAILING;
Chained WINDOW JOINs
You can chain multiple WINDOW JOINs together to aggregate from different tables or with different time windows:
SELECT
t.sym,
t.ts,
t.price,
sum(p.bid) AS sum_bids,
avg(q.ask) AS avg_asks
FROM trades t
WINDOW JOIN bids p
ON (t.sym = p.sym)
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
WINDOW JOIN asks q
ON (t.sym = q.sym)
RANGE BETWEEN 30 seconds PRECEDING AND 30 seconds FOLLOWING;
Each WINDOW JOIN operates independently, allowing you to aggregate data from multiple related tables with different time windows in a single query.
Using EXCLUDE PREVAILING
Exclude the prevailing value to only aggregate rows strictly within the time window:
SELECT
t.sym,
t.ts,
sum(p.price) AS window_sum
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
EXCLUDE PREVAILING;
This is useful when you want strict window boundaries and do not need the last known value before the window starts.
With left table filter
Filter left table rows using a WHERE clause:
SELECT
t.sym,
t.ts,
sum(p.price) AS window_sum
FROM trades t
WINDOW JOIN prices p
ON (t.sym = p.sym)
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
EXCLUDE PREVAILING
WHERE t.price < 450
ORDER BY t.ts;
Query plan analysis
Use EXPLAIN to see the execution plan and verify optimization:
EXPLAIN SELECT t.sym, sum(p.price)
FROM trades t
WINDOW JOIN prices p ON (t.sym = p.sym)
RANGE BETWEEN 1 minute PRECEDING AND 1 minute FOLLOWING
EXCLUDE PREVAILING;
Look for these indicators in the plan:
- Async Window Fast Join: Optimized parallel execution with symbol-based join
- Async Window Join: Standard parallel execution
- vectorized: true: Indicates SIMD-optimized aggregation
Limitations
UNBOUNDED PRECEDINGandUNBOUNDED FOLLOWINGare not supported- The right table must be a direct table, not a subquery
- Cannot reference non-aggregated right table columns in
SELECT - Window high boundary cannot be less than low boundary
- Aggregate functions cannot reference columns from both tables simultaneously
- WINDOW JOIN can be combined with another WINDOW JOIN, but not with other JOIN types
GROUP BYis not supported with WINDOW JOIN - use a CTE or subquery instead
GROUP BY workaround
WINDOW JOIN cannot be combined with GROUP BY in the same query. To aggregate WINDOW JOIN results, wrap the join in a CTE first:
-- This will NOT work:
SELECT
t.counterparty,
count(*) AS trade_count,
avg(first(m.mid_price) - t.price) AS avg_slippage
FROM trades t
WINDOW JOIN market_data m ON (t.symbol = m.symbol)
RANGE BETWEEN 10 milliseconds FOLLOWING AND 10 milliseconds FOLLOWING
GROUP BY t.counterparty; -- ERROR: GROUP BY not supported
WITH trades_with_future_mid AS (
SELECT
t.counterparty,
t.price,
first(m.mid_price) AS future_mid
FROM trades t
WINDOW JOIN market_data m ON (t.symbol = m.symbol)
RANGE BETWEEN 10 milliseconds FOLLOWING AND 10 milliseconds FOLLOWING
INCLUDE PREVAILING
WHERE t.timestamp > dateadd('d', -1, now())
)
SELECT
counterparty,
count(*) AS trade_count,
avg(future_mid - price) AS avg_slippage
FROM trades_with_future_mid
GROUP BY counterparty;
This pattern applies to any aggregation over WINDOW JOIN results - always perform the join first in a CTE, then aggregate in the outer query.
Performance tips
- Use symbol-based joins: When possible, join on symbol columns to enable the Fast Join optimization
- Narrow time windows: Smaller windows mean less data to aggregate
- Filter the left table: Use
WHEREclauses to reduce the number of rows processed - Parallel execution: WINDOW JOIN automatically leverages parallel execution based on your worker configuration